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Highlights 
 Novel tools such as EnsembleCNV, which integrates calls from multiple methods, do not yet 

outperform PennCNV in balancing precision and recall. 

 The significant lack of consensus among CNV calling results highlights the need for careful 

interpretation and integration of high-confidence calls. 

 We present reproducible CNV calling workflows, which can uniform CNV detection across 

studies, and benchmarking performance analyses, which can be applied to other CNV 

detection tools. 

Abstract 
Copy Number Variations (CNVs) are crucial in various diseases, especially cancer, but detecting them 

accurately from SNP genotyping arrays remains challenging. Therefore, this study benchmarked five 

CNV detection tools—PennCNV, QuantiSNP, iPattern, EnsembleCNV, and R-GADA—using SNP array 

and WGS data from 2,002 individuals of the DRAGEN re-analysis of the 1000 Genomes project. 

Results showed significant variability in tool performance. R-GADA had the highest recall but low 

precision, while PennCNV was the most reliable in terms of precision and F1 score. EnsembleCNV 

improved recall by combining multiple callers but increased false positives. Overall, current tools, 

including new methods, do not outperform PennCNV in precise CNV detection. Improved reference 

data and consensus on true positive CNV calls are necessary. This study provides valuable insights 

and scalable workflows for researchers selecting CNV detection methods in future studies. 

Keywords: Copy Number Variation, SNP arrays, variant calling, benchmarking, reference datasets 
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Introduction 
Genetic variations within the human genome have gathered significant attention in recent years, 

ranging from Single Nucleotide Variants (SNVs) to large (>50 bp) structural alterations and 

rearrangements in the genome. Among these, Copy Number Variations (CNVs) are a critical type of 

structural variation in which a segment of DNA is deleted, duplicated, or amplified, greater than 50 

bp in length (Zarrei et al., 2015) though other operational definitions may be applied (MacDonald et 

al., 2014; Redon et al., 2006; F. Zhang et al., 2009). These CNVs can influence phenotype through 

several mechanisms, such as alteration of dose-sensitive genes, change of gene structure, regulatory 

effects and position effects (Gamazon & Stranger, 2015). Consequently, CNVs are a rich source for 

diagnostic and prognostic models, particularly in oncogenomic research (Gunturu et al., 2013; Hu et 

al., 2021). 

CNVs can be detected using either array-based or Next Generation Sequencing (NGS) 

technologies. While the two approaches differ in resolution and NGS is rapidly advancing, array-

based platforms continue to offer significant advantages, such as lower costs and reduced resource 

requirements. This makes them particularly useful for CNV detection in many research and clinical 

environments, particularly where resources are limited or large datasets have already been 

generated using these technologies. For instance, a recent study by Gan et al. developed and 

validated a genetic testing workflow for known pharmacogenomic genes using the Illumina Global 

Screen array (Gan et al., 2024). Similarly, SNP array data was used alongside Whole Genome 

Sequencing in the All of Us Research Program to complement genomic analyses for over 200,000 

individuals (Bick et al., 2024). Regardless of the selected platform for CNV detection, both sequencing 

and array-based techniques rely heavily on the utilization of Bioinformatic algorithms. As there are 

many different algorithms publicly available (Colella et al., 2007; Pique-Regi et al., 2010; K. Wang et 

al., 2007) which are often inconsistent in the resulting CNV calls (Nutsua et al., 2015), selecting the 

most suitable tool can easily become a daunting task. Benchmark studies are essential to providing 

objective evaluations of multiple available tools under various conditions (Weber et al., 2019). 

Several different benchmark studies have been conducted for array-based CNV callers 

(Marenne et al., 2011; Xu et al., 2013). The most recent study by Nutsua et al. found that 

Hidden Markov Model (HMM)-based methods, in particular PennCNV, had the highest 

prediction accuracy (Nutsua et al., 2015). However, recent advancements have introduced 

new methods, including more advanced ensemble and deep learning methods (Eghbal-

Zadeh et al., 2019; Z. Zhang et al., 2019). Furthermore, the previous studies did not 

determine the performance of tools given different conditions such as the interest in a single 
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type of CNV or the sample size. Finally, tool installation and application is often complex 

without a computational background. To conclude, there is a need for stable CNV detection 

workflows that can be easily implemented and adapted with objective performance 

assessments. 

To address these gaps, the current study systematically benchmarks state-of-the-art CNV 

detection tools for Whole-Genome SNP genotyping arrays. Utilizing publicly available data 

from the 1000 Genomes project as a gold standard (Auton et al., 2015), we aim to provide 

reproducible and adaptable workflows through the use of Docker images and Nextflow 

pipelines. Our evaluation will include comparison of the resulting CNV calls to the DRAGEN 

re-analysis of the 1000 Genomes dataset, taking into account various characteristics such as 

CNV type and size. Ultimately, we seek to offer recommendations on the most suitable tools 

for different research needs. 

Methods 

Data collection and preprocessing 

1000 Genomes HD Genotype Data 

From the 1000 Genomes phase 3 dataset, dense genotyping data originating from the Illumina 

HumanOmni2.5.Quad v1.0B SNP array was retrieved (Auton et al., 2015). This dataset consists of 

2,141 samples that passed a call rate threshold of 97% and were concordant to their provided 

gender, as defined by the internal Quality Control (QC) pipeline. The array data was retrieved in raw 

.idat format. Unfortunately, the manifest file including the probe sequences and corresponding 

genomic locations for this array provided by Illumina have not been updated beyond reference 

genome GRCh36. Therefore, the raw data was processed using GenomeStudio v2.0 using the 

standard map of probe sequences for reference genome GRCh36. 

1000 Genomes DRAGEN Re-analysis 

The recent reanalysis of the 1000 Genomes phase 3 Dataset executed with the Illumina DRAGEN 

(Dynamic Read Analysis for GENomics) 3.5 Bio-IT platform (Olson et al., 2022) was selected as the 

gold standard due to its high quality CNV calls. A recent preprint validated the DRAGEN algorithm 

against the Genome in a Bottle SV benchmark set and reported improved performances for small 

CNVs (1-10kbp) and similar performances for larger CNVs (>10kbp) compared to its competitors 

(Behera et al., 2024).  The CNV calls were accessed on 27-07-2022 from 

https://registry.opendata.aws/ilmn-dragen-1kgp. This dataset includes 2,504 unrelated samples from 

Phase 3 of the 1000 Genomes project (Auton et al., 2015), as well as 698 additional related samples 
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funded by the National Human Genome Research Institute (NHGRI). These samples were previously 

sequenced by the Illumina NovaSeq 6000 system at >30x coverage and with 150bp paired reads. The 

CNV calls from the 2,002 samples that were identical to the raw array data available were selected. 

Selection of tools 

The five tools selected for this benchmark study – PennCNV (K. Wang et al., 2007), QuantiSNP 

(Colella et al., 2007), iPattern (Pinto et al., 2010), EnsembleCNV (Z. Zhang et al., 2019) and R-GADA 

(Pique-Regi et al., 2010) – were primarily chosen based on their established relevance and 

widespread use in the field of CNV detection from SNP arrays. This is further justified by their citation 

frequency in existing literature, indicating their importance in both clinical and research contexts. 

These tools also represent a diverse range methodologies, including Hidden Markov Models (HMMs), 

Bayesian approaches and ensemble methods, providing a comprehensive evaluation across different 

algorithms. EnsembleCNV was specifically included due to the novelty of the method and the 

reported improvements in performance over tools like PennCNV, QuantiSNP and iPattern, as 

highlighted in its original publication. Table 1 provides an overview of the general characteristics of 

each method, highlighting the methodological differences and key features for CNV detection. 

Tool Method
ology 

Vers
ion 

Features Joint 
vs 
Indivi
dual 

URL Langu
age 

Year of 
publica
tion 

# 
Citati
ons* 

PennCN
V 

Hidden 
Markov 
Model 

1.0.
5 

Gap fraction 
between 
adjacent calls 
(fraction) & 
the minimum 
number of 
SNPs for an 
individual 
call 
(numsnp). 

Indivi
dual 
or 
joint-
callin
g for 
famili
es 

https://penncnv.openbioinfo
rmatics.org/ 

Perl 2007 1,999 
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QuantiS
NP 

Hidden 
Markov 
Model 

2 The 
characteristic 
length used 
to calculate 
transition 
probabilities, 
the number 
of iterations 
used for the 
EM 
algorithm 
during 
learning, 
number of 
mixture 
components 
used in noise 
model 
(nComp), 
degrees of 
freedom of 
student t-
distribution 
(v), shape 
parameters 
of Beta prior 
on outlier 
rate 
(nu_alpha & 
nu_beta), 
scale 
parameters 
of Dirichlet 
prior on 
genotype/mi
xture 
proportion 
(w_alpha & 
q_alpha), 
concentratio
n parameter 
of Normal-
Wishart prior 
(tau), scale 
parameters 
of Wishart 
prior on 
covariance 
matrix 
(S_alpha & 
S_alpha_ho
mdel) & 
characteristic 
length for 
normal state 

Indivi
dual 

https://sites.google.com/site
/quantisnp/ 

MATL
AB 

2007 769 
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(longChromo
some).  

iPattern Gausian 
Mixture 
Model 

0.58 The 
minimum 
number of 
SNPs for an 
individual 
call (winSize), 
maximum 
distance 
between 
adjacent 
SNPs for an 
individual 
call 
(maxProbeDi
stance), 
value for 
density 
estimation 
(bandWidth) 
& parameter 
for 
identifying 
density 
clusters 
within 

Joint-
callin
g 

http://www.tcag.ca/tools/in
dex.html 

R & 
Pytho
n 

2010 N.A.*
* 
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windows 
(peakSeparat
ion). 

Ensembl
eCNV 

Ensembl
e 
method 

N.A. Frequency 
cut-off for 
selecting 
CNVRs with 
common 
CNV 
genotype 
that will be 
subjected to 
boundary 
refinement 
(freq) &  
GQ score 
threshold for 
filtering the 
final result 
(gqscore). 

Joint-
callin
g 

https://github.com/HaoKeLa
b/ensembleCNV 

Perl & 
R 

2019 21 

R-GADA Segment
ation 

2.0.
1 

The 
sparseness 
hyper 
parameter of 
the sparse 
Bayesian 
learning step 
(aAlpha), the 
array noise 
level 
(sigma2), the 
critical value 
of the t-
statistic of 
segment 
breakpoints 
as computed 
by 
backwards 
elimination 
(t) & the 
minimum 
number of 
SNPs for an 

 https://github.com/isglobal-
brge/R-GADA 

R 2011 64 
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individual 
call 
(MinSegLen). 

 
Table 1: The CNV detection methods tested in this benchmark study together with their 
characteristics. *The number of citations was determined on the 3rd  of June 2024 using Google 
Scholar. **iPattern had no citations as this method was never officially published. 

QuantiSNP 

QuantiSNP is an Objective Bayes Hidden-Markov Model (OB-HMM) inferring copy number state 

based on the log R ratio (LRR) and the B-allele frequency (BAF) of SNPs (Colella et al., 2007). The LRR 

and BAF refer to the total fluorescent intensity and the relative ratio of this fluorescent intensity 

between the two probes representing the two alleles at each SNP, respectively. QuantiSNP defines 

six hidden states representing different CNV events, as well as the normal state. The Objective Bayes 

paradigm is utilized to give probabilities to the called copy number states. 

PennCNV 

PennCNV is a Hidden Markov Model (HMM) based method as well (K. Wang et al., 2007), that has 

been widely applied in previous research (Marshall et al., 2016; K. Wang et al., 2014). Besides LRR 

and BAF values it utilizes the population allele frequency and distance between neighboring SNPs. 

This method differs from QuantiSNP in the application of state-specific and distance-dependent 

transition probabilities in the HMM. The first is based on the fact that certain copy number state 

transitions are more common than others, while the latter is based on that SNPs in close proximity 

are more likely to have the same state compared to those with large distances between them. In 

addition, PennCNV is the first method that can also incorporate family information for the joint-

calling of CNVs when this information is available. However, as the data in this study originate from 

unrelated individuals, this property will not influence the current performance. 

iPattern 

iPattern is a method that can perform joint-calling of CNVs for both related and unrelated individuals 

(Pinto et al., 2010). This tool takes advantage of consensus in signals across samples resulting in 

better detection of copy number polymorphisms (CNPs) with higher allele frequencies. Instead of 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

LRR and BAF values, it utilizes the signal intensities after normalization with GenomeStudio. The 

iPattern pipeline includes balancing of the X and Y channels, quantile normalization, intensity 

rescaling and variance normalization. Subsequently, a sliding-window method is used to identify 

potential CNV regions which is followed by boundary refinement resulting in the final CNV calls. 

EnsembleCNV 

Recently, Zhang et al. introduced a novel ensemble method called EnsembleCNV (Z. Zhang et al., 

2019). This method takes the CNV calls from three other tools, PennCNV, QuantiSNP and iPattern, 

and combines them using a heuristic algorithm. In their study, Zhang et al. showed that their 

algorithm outperformed simple combining of these callers with either the ‘intersection’ or ‘union’ 

strategy in terms of concordance rate and stability of technical duplicates (Z. Zhang et al., 2019). 

EnsembleCNV consists of four steps; 1) identification of batch effects based on pre-generated sample 

summary statistics and LRR values; 2) identification of CNV regions (CNVRs) by combining individual 

CNV calls using a forward-screening and backward-pruning approach; 3) re-genotyping of CNVRs 

using locally fitted likelihood models; 4) boundary refinement of CNVRs using local correlation 

matrices. Additionally, they defined a genotype quality (GQ) score that can be used to filter out low-

quality CNVs. 

R-GADA 

R-GADA is an R-based implementation of the segmentation algorithm called Genome Alteration 

Detection Analysis (GADA) (Pique-Regi et al., 2010). First, GADA fits a sparse Bayesian Learning (SBL) 

model to identify the most likely candidate breakpoints for each copy number state. Second, GADA 

implements a backward elimination (BE) procedure to remove false positive breakpoints based on a 

user defined cut-off to control the false discovery rate (FDR). In this study, the sparseness 

hyperparameter α was set as 0.8 and the critical value for BE as 5, as this was recommended for 

achieving a lower FDR, although in trade-off with an expected lower recall. 

Data post processing 
As each CNV calling method uses their own format for representing the resulting CNV calls these 

were first converted into a general tab separated format including the sample identifier, 

chromosome, start coordinate, end coordinate, length and CNV type. The array-based identifiers 

were mapped to individual identifiers supplied by the 1000Genomes project, which accord with 

identifiers used in the gold standard VCF file. As the gold standard CNV calls were established using 

GRCh38 as a reference, the LiftOver tool from UCSC was used to map the start and end coordinates 

of the CNVs called by each method to GRCh38 as well. In addition, gold standard CNVs were filtered 
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on overlap with a minimum of five probes on the HumanOmni2.5.Quad v1.0B SNP array to include 

only CNVs detectable by this array. 

Implementation of tools and benchmarking 

An overview of the implementation of the tools and the execution of the benchmark analysis can be 

seen in Figure 1. To provide stable and transferable software packages, all software and 

corresponding dependencies were installed within individual Docker containers for each of the tools 

(Merkel, 2014). Subsequently, stable and reproducible pipelines were written in a Nextflow workflow 

(DI Tommaso et al., 2017). All tools were run with default parameters according to their original 

publications, which can be viewed in Supplementary Table 1. The versions of the tools and their 

dependencies are provided in Supplementary Table 2. The full workflow, including all individual 

pipelines, can be accessed through GitHub (https://github.com/mbaardwijk/aCNVbench).  To ensure 

the reproducibility of our analysis, we provide the following example of how to run the CNV 

detection and benchmarking workflow using Nextflow: 

nextflow run main.nf --inputSheet {path to tab-separated SNP array input 

file} --goldstandardFile {path to gold standard file in VCF or tab-

separated format} –-genome ‘hg18’ 

All tool specific parameters are preconfigured in the nextflow.config file, which can be easily 

modified to adjust the settings for each tool. The input sheet is a tab-separated file including the 

following: 

 The Illumina final report file, containing the columns Sample ID, SNP Name, Chr, Position, 

Allele 1 – Forward, Allele 2 – Forward, X, Y, B allele frequency and Log R ratio. 

 A sample map, with at least the columns Name and Gender. 

 A probe map, specifying the chromosome and position for every probe on the array. 

The workflow allows for flexibility by enabling users to exclude specific tools from the analysis. For 

instance, the parameter ‘—skipPennCNV’ can be added to remove PennCNV from the pipeline 

execution. 
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 Figure 1: Schematic overview of the data collection and implementation of CNV calling methods. 

Data was collected from the 1000 Genomes Project. Individual CNV callers and their software 

dependencies were wrapped in Docker images and are available through DockerHub 

(https://hub.docker.com/u/mbaardwijk). Nextflow workflows were written for each CNV calling 

method, making use of these Docker images, including preprocessing, CNV detection, post processing 

and the final benchmarking and are available through GitHub 

(https://github.com/mbaardwijk/aCNVbench). 

Performance assessment of CNV calls 

First, the definition of true positive (TPs), false positive (FP) and false negative (FN) calls needs to be 

established to facilitate the calculation of different performance metrics of the resulting CNV calls. 

Haraksingh et al. defined true positive calls as those with 50% reciprocal overlap with an individual or 

set of CNVs in the gold standard dataset or being in a set of CNVs with 50% reciprocal overlap 

(Haraksingh et al., 2017). Subsequently, false positive calls are defined as CNV calls with no or in-

sufficient reciprocal overlap with the gold standard dataset. Finally, false negative calls are defined as 

CNVs in the gold standard dataset with no or in-sufficient reciprocal overlap with the CNV calls. In 

this study, we adapted this approach by using a range of different thresholds for the percentage of 

reciprocal overlap starting at a single basepair of overlap until 50% of reciprocal overlap. This allowed 

us to assess the impact of using different thresholds and to determine the maximum achievable 

performance for each CNV calling method. Examples of the classification methodology using the 
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threshold of 50% reciprocal overlap can be seen in Figure 2A-C.

 

Figure 2: An example of the classification scheme for performance assessment with a threshold of 

50% overlap. Gold standard regions are visualized in blue, while the examples of two call sets are 

provided in green and red. Formulas for how to calculate the recall, precision and F1-score using the 

resulting TPs, FPs and FNs are also provided. A: The green calling method shows a deletion with more 

than 50% reciprocal overlap with a deletion in the gold standard data, while the red calling method 

shows a set of deletions that combined also show more than 50% reciprocal overlap. For both 

methods, these will be defined as a single TP. B: The green calling method shows a duplication, while 

the red calling method shows a set of deletions. In the gold standard data, no duplication or deletion 

was observed so these will be defined as one FP for the green method and two FPs for the red 

method. C: No CNVs were discovered in the green or red calling method, while a deletion was 

observed in the gold standard data. For both methods, this will be defined as a single FN. 

For each sample, the calling method and threshold of overlap, the number of true positives, 

false positives and false negatives was established using the aforementioned classification. Using the 

sum of these values, recall, precision and F1 scores were calculated for each calling method, 

summarizing the overall performance. Recall, also referred to as sensitivity, represents the 

proportion of true CNV calls of the gold standard dataset that are identified by the calling method. 

Precision measures the proportion of CNVs detected by the calling method that are true CNV calls. 

Finally, the F1-score represents the balance of the recall and precision scores. The formulas for 

calculating the recall, precision and F1-score are provided in Figure 2. These calculations were 

repeated for each threshold of (reciprocal) overlap to assess how overlap stringency affected the 
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performance of the detection methods. To determine the most suitable tool given different 

conditions, different types of copy number variations were defined, namely deletions and 

duplications. 

Results 
We processed 2,002 HumanOmni2.5.Quad SNP array samples using five CNV detection tools 

(QuantiSNP, PennCNV, iPattern, R-GADA, EnsembleCNV), which are summarized in Table 1. First, the 

characteristics of the called CNVs will be described. Second, the overlap in called CNVs between 

methods will be compared. Third, the called CNVs will be compared to a reference database and 

known functional genomic regions such as exons, introns and promoters. Fourth, the benchmark 

performance will be assessed in terms of recall, precision and F1 score. Fifth, the memory and CPU 

requirements of the different CNV callers will be evaluated. Finally, multiple tool recommendations 

will be made based on different aspects of the CNV callers. 

Distribution of CNV count, length and type 
For each method, CNVs were called as described in the methods section. The genomic coordinates of 

the resulting CNVs were converted from GRCh36 to GRCh38 using the UCSC liftOver tool. After this 

conversion, 0.1-7.2% of the segments were lost due to mapping issues (Supplementary Table 3). The 

57,826 unique WGS based CNV calls were filtered on overlap with a minimum of 5 probes on the SNP 

array, resulting in 32,258 unique CNVs being included in the benchmark. The average number of 

CNVs called by the different algorithms varied greatly between methods, as can be seen in Figure 3A. 

However, all tools have in common that they called more deletions than duplications for most 

samples, as shown by Figure 3B-C. Compared to the gold standard dataset, PennCNV, QuantiSNP and 

iPattern called on average less CNVs per sample, while R-GADA called more CNVs per sample and 

EnsembleCNV called a similar number of CNVs per sample. 
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Figure 3: A heatmap showing the number of called CNVs for each CNV detection method and the gold 

standard dataset per individual sample. The number of called CNVs were divided into bins of different 

CNV count ranges, which were subsequently counted for all individual samples (A), for all individuals 

including only deletions (B) and for all individuals including only duplications (C). Tiles were left blank 

if no individual sample had a CNV count within that range for that method.  

On top of large differences in average CNV count, the CNV calling algorithms also differed in 

the size of the called CNVs, as is shown in Figure 4. Especially the R-GADA algorithm resulted in larger 

CNVs. Another interesting observation is that most CNV calling algorithms (PennCNV, QuantiSNP, 

iPattern and EnsembleCNV) also called CNVs with smaller sizes as compared to the gold standard 

dataset, even though WGS is reported to be more sensitive in detecting small CNVs due to its base-

pair level resolution. This might indicate that with the right algorithms smaller CNVs can be detected 

within SNP genotyping array when there are enough probes to cover that region. However, it could 

also be that these regions are artifacts and that these algorithms are more sensitive to noise. 
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Figure 4: A heatmap showing the size distributions of unique CNVs called by the different CNV 

detection methods in comparison to the gold standard. The unique CNVs were divided into bins of 

different size ranges, which were subsequently counted, and log-transformed for all called CNVs (A), 

for all deletions (B) and for all duplications (C). Tiles were left blank if no unique CNV with a size 

within that range was detected for that method. 

Consensus between different CNV callers and reference databases 
To establish whether there was consensus between the different callers, all unique CNVs were split 

into segments in which no sample changed state. Subsequently, each segment was tested for overlap 

with any of the unique CNVs called by each different method. Figure 5 shows the overlap between 

methods by means of an UpSet plot (Lex et al., 2014). From Figure 5, it can be established that most 

CNV segments can be assigned to R-GADA, followed by EnsembleCNV, while iPattern shows the 

smallest number of CNV segments. With only 9,752 out of 2,878,941 (0.34%) segments being shared 

by all five methods, the consensus between all callers is limited. R-GADA shows the most overlap 

with CNV segments from other individual callers, although this is likely due to chance by the large 

CNVs called by R-GADA. Most notably, the most similar methodologies, PennCNV and QuantiSNP, 

share more CNV segments with other callers than each other. To determine whether there was any 

bias in the size of the separated segments, the size distribution of all sets was included within Figure 

5 as well. From this it can be observed that the majority of segments was in between 1 and 10 kb, 

and this was approximately the same for all different sets. 
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 Figure 5: An UpSet plot showing the overlapping CNV segments called by the different methods. The 

bottom left graph shows the number of CNV segments identified by each individual caller, while the 

bottom right graph indicates which callers are represented within each set. The middle graph shows 

how many CNV segments are represented within each set. The top graph shows the distribution of 

the segment size of the CNV segments represented within each set. 

 The called CNVs as well as the gold standard CNVs were also compared to reference 

databases of known variation and relevant regions within the genome. Figure 6A shows the fraction 

of CNVs called by each method that show more than 50% reciprocal overlap with CNVs from CNVs 

within the Database of Genomic Variants (DGV) (MacDonald et al., 2014). From Figure 6A it can be 

observed that the majority of CNVs in the gold standard dataset are likely previously established 

CNVs, since 79.0% of the DGV CNVs were rediscovered by the Gold Standard dataset. For the array-

based tools, PennCNV showed the most overlap with previously established CNVs, followed by 

QuantiSNP, although this was limited to 31.4% of the called CNVs. Therefore, it is likely that there is a 

bias within DGV for variants originating from the sequencing based 1000Genomes dataset. Figure 6B 

shows the fraction of CNVs called by each method that show overlap with exon, intron and promoter 

regions originating from the UCSC knownGene hg38 dataset (Team BC & Maintainer BP, 2019). When 

CNVs overlapped multiple regions they were classified by the maximum overlap and when CNVs did 

not overlap any of these regions, they were classified as intergenic. For all CNV call sets, most CNVs 

were discovered in intergenic regions, while the least amount of CNVs overlapped with exons. 
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Notably, the CNVs called by R-GADA, besides intergenic regions, only showed overlap with some 

intronic regions. 

 

Figure 6: The overlap of CNVs call sets including the gold standard set with known reference 

databases. A: The fraction of CNVs with >50% reciprocal overlap with CNVs from the Database of 

Genomic Variants (DGV) release 2020-02-25. B: The fraction of CNVs with >50% overlap with exon, 

intron and promoter regions from UCSC knownGene based on reference genome hg38.  

Benchmark performances 
The performance of each individual method was established by determining the total number of true 

positive, false positive and false negative CNV calls for each of the 2,002 samples for which both SNP 

array data and WGS based CNV calls were available as explained in the methods section. This process 

was repeated over different thresholds for reciprocal overlap, ranging from 1-50%, as well as 1bp of 

overlap. Figure 7A-C show the recall, precision and F1 scores respectively. From Figure 7A, it can be 

observed that R-GADA shows the highest recall for both deletions and duplications and each 

threshold of overlap, ranging from 0.83 to 0.97. Additionally, it can be observed that all methods 

show higher recall for duplications compared to deletions. Figure 7B shows that PennCNV attained 

the highest precision for both deletions and duplications and each threshold of overlap, ranging from 

0.14 to 0.47. While PennCNV and QuantiSNP showed a higher precision for deletions, the other three 

methods showed a higher precision for duplications. As can be seen from Figure 7C, PennCNV also 

achieved the highest F1 score for both deletions and duplications and each threshold of overlap, 

ranging from 0.20 to 0.47. While the different thresholds did not change the best performing method 

per score, they do provide some information on the highest obtainable score for each method. Most 
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noticeably, the scores for duplications called by EnsembleCNV drop severely between a threshold of 

40% and 50% reciprocal overlap. 

 

Figure 7: The overall benchmark performances for the different CNV detection methods and CNV type 

categories for different thresholds of reciprocal overlap. A-B: Recall and precision scores were 

established from the sum of all per-sample true positives, false positives and false negatives, using 

the formulas described in the methods section. C: F1-score was calculated over the recall and 

precision scores in A-B, using the formula described in the methods section. 

Computational requirements for CNV callers 
The CPU and memory requirements were obtained from the Nextflow tracing file after running the 

pipeline using a maximum of 48 CPUs and 192 GB of memory. Figure 8 shows the average processing 

time per sample, as well as the peak of real memory. From Figure 8A it can be observed that 

QuantiSNP and iPattern required a significantly higher amount of computational time compared to 

PennCNV and R-GADA. It should also be noted that because EnsembleCNV requires input from 

PennCNV, QuantiSNP and iPattern, the actual processing time per sample is highest for 

EnsembleCNV. Figure 8B shows that EnsembleCNV required a significantly higher amount of memory 

compared to all others. 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 

Figure 8: Computational requirements for the different callers, as well as preprocessing. A: Total CPU 

time to process a single sample for each tool, calculated by dividing the overal processing time by the 

numbers of samples. B: The maximum of real memory usage for each individual CNV detection 

method measured in gigabytes. The workflows were executed on a CPU server running Ubuntu 

22.04.5 LTS, utilizing up to 48 CPUs and 192GB of memory. 

Recommendations 
Based on all the previous findings, several recommendations can be made. As no differences were 

observed in the tools’ highest recall, precision or F1 score between deletions, duplications and the 

combination of both, the CNV type of interest should not influence the choice of method. When the 

goal is to discover as many true positive calls as possible, regardless of a high false discovery rate, R-

GADA is the best performing tool. For those aiming to still detect numerous true CNVs while 

maintaining a better balance between true and false discoveries, EnsembleCNV is a viable option. 

However, even though it discovers fewer CNV call, PennCNV should still be regarded as the most 

reliable method based on its precision and F1 score. If processing time is limited, QuantiSNP, iPattern 

or EnsembleCNV should be avoided. Similarly, if computational resources are limited, EnsembleCNV 

should not be considered. 
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Discussion 
Algorithms for the detection of Copy Number Variations (CNVs) for SNP genotyping array data have 

been around for more than a decade (Olshen et al., 2004). Recent advances in algorithm 

development using ensemble or deep learning methods have resulted in novel methods for this 

purpose. This study aimed to benchmark five state-of-the-art CNV detection tools for SNP genotyping 

array data. Unlike previous benchmark studies  (Marenne et al., 2011; Nutsua et al., 2015; 

Winchester et al., 2009), this study has determined performance for different thresholds of 

reciprocal overlap, offering a more nuanced comparison. We also introduced EnsembleCNV, a novel 

ensemble method reported to outperform established tools such as PennCNV, QuantiSNP and 

iPattern. Additionally, we assessed the speed and memory usage for each tool to establish which 

tools are suitable if computational resources are limited. Finally, based on our findings, we provide 

practical recommendations on which tools are best suited for specific research conditions.  

Overall, the performance of CNVs detection was limited for all tools. Our findings suggest that 

PennCNV is the most precise CNV caller in all categories, while R-GADA is the most sensitive one. 

While there were differences observed in the performance for the different types of calls made by 

the same algorithm, unexpectedly, the most sensitive and precise CNV callers remained the same 

across categories. This indicates that a CNV caller should be selected based on the preference of 

better recall or precision instead of a CNV type of interest. Alternatively, the F1-Score can be chosen 

as a measure of balanced recall and precision, based on which PennCNV was found to be the best 

performing CNV calling method for all categories. Surprisingly, the novel ensembling method 

EnsembleCNV detected many false positive CNV calls. An explanation for this observation might be 

that the developers assessed their method solely on the recall and concordance between technical 

duplicates only (Z. Zhang et al., 2019). Another explanation is that ensembling methods are limited 

by the performance of the other methods that they draw from. EnsembleCNV takes CNV calls from 

PennCNV, QuantiSNP and iPattern as starting point, of which the latter two methods lacked precision 

in this study.  

Previous studies have applied other strategies to evaluate the performance of CNV detection 

tools but found similar results. Marenne et al. compared CNV calls made by PennCNV, QuantiSNP 

and CNVPartition to a reference dataset generated using Multiplex Ligation-dependent Probe 

Amplification (MLPA) (Marenne et al., 2011). Similar to most methods included in our study, they 

found that precision was usually higher than recall. Marenne et al. concluded that while PennCNV 

was their best performing method based on reliability, all algorithms were limited in recall. Given the 

current results, it is unfortunate that novel methods like EnsembleCNV have still not solved these 

limitations in CNV detection from SNP arrays. 
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Another strategy for benchmarking CNVs, namely using SNP array trio data, was executed by 

Nutsua et al. (Nutsua et al., 2015). This strategy relies on the fact that over 99% of the CNVs found in 

an individual are inherited by one of the parents. They compared PennCNV, QuantiSNP, R-GADA, 

GLAD, VEGA and APT, and found that the Hidden Markov Model (HMM)-based methods like 

PennCNV and QuantiSNP achieved the highest precision. However, in line with the current study, the 

authors noted that array-based CNV detection methods fall short in limiting false positive calls and 

show little concordance in CNV calls. 

Even though NGS technologies have become popular in recent years, SNP genotyping arrays 

remain an essential technique in genomic research. Due to their affordability and scalability, they are 

more suitable for large-scale populations studies compared to WGS. SNP arrays allow for efficient 

detection of CNVs and continue to provide valuable insights in various research contexts. Therefore, 

the benchmarking results and workflows presented in this study are highly relevant for researchers 

and clinicians in this field. 

While this study provides valuable insights into the performance of various CNV detection tools, 

it is important to acknowledge its limitations. First, the benchmark was based on a single dataset and 

may therefore not fully represent the genomic diversity present in broader populations. To mitigate 

this, we also compared the detected CNVs against reference CNVs in the Database of Genomic 

Variants (DGV). Additionally, recent validation of the DRAGEN algorithm against the Genome in a 

Bottle reference  (Behera et al., 2024) has demonstrated the reliability of the DRAGEN re-analysis 

dataset used in this study, mitigating concerns about potential false positives and supporting the 

robustness of our gold standard. Second, the use of WGS-based CNVs as a gold standard introduces 

challenges due to fundamental differences between WGS and SNP-array technologies. WGS provides 

base-pair level resolution, allowing for the detection of small CNVs, whereas SNP arrays are 

dependent on how the probes are distributed across the genome, limiting the resolution and 

coverage. To account for this, we filtered the gold standard CNVs to only include those spanning at 

least five probes on the SNP array. Despite this adjustment, it is important to note that WGS can still 

produce false positive and negative results, especially in regions with complex genome structures 

such as repetitive regions. SNP arrays, on the other hand, may produce false positives due to signal 

noise caused by factors such as poor DNA quality, batch effects or inherent limitations of CNV 

detection algorithms. The lack of an optimal gold standard dataset is a major challenge in the 

development and evaluation of CNV detection tools. In the end, a true "Gold Standard" dataset can 

only be generated through the production of high quality telomere-to-telomere pangenomes by 

combining different read technologies across numerous genomes from various ancestral 

backgrounds (T. Wang et al., 2022). 
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Conclusions 
In this thorough benchmark study, we evaluated the performance of five popular SNP-array-based 

CNV calling methods: PennCNV, QuantiSNP, iPattern, EnsembleCNV and R-GADA, using data from the 

DRAGEN re-analysis of the 1000 Genomes project as a gold standard. The analysis focused on key 

metrics such as recall, precision, F1 score, and categorized CNVs based on CNV type and size. 

The results demonstrate significant variability in the performance of different CNV calling methods. 

PennCNV consistently achieved the highest precision and F1 score across various thresholds, 

indicating its reliability in CNV detection. R-GADA, while showing the highest recall, tended to call 

many false positive CNVs, indicating a higher sensitivity to noise. EnsembleCNV, leveraging a 

combination of methods, presented a balanced performance but did not surpass PennCNV in 

precision or R-GADA in recall. 

Our findings also highlight the challenges associated with CNV detection in SNP array data. The low 

consensus between different callers, as pointed out by the minimal overlap in detected CNV 

segments, underscores the necessity for cautious interpretation of results and need for potential 

integration of multiple tools for comprehensive analysis. 

In addition, reproducible CNV calling and benchmark workflows were developed in Nextflow, 

accompanied by Docker containers, making the application of these tools as well as execution of the 

benchmark highly scalable for future studies. In conclusion, while no single tool outperformed others 

across all metrics, PennCNV is deemed to be the most reliable tool for CNV calling based on the 

precision and F1 scores. As all methods are either limited in recall or precision, novel methods for 

CNV calling or for combining high-quality calls of multiple tools are necessary. 
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