
Yang et al. Molecular Cytogenetics           (2024) 17:26  
https://doi.org/10.1186/s13039-024-00692-2

RESEARCH

Copy number variation heterogeneity 
reveals biological inconsistency in hierarchical 
cancer classifications
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Abstract 

Cancers are heterogeneous diseases with unifying features of abnormal and consuming cell growth, where the dereg‑
ulation of normal cellular functions is initiated by the accumulation of genomic mutations in cells of ‑ potentially ‑ any 
organ. At diagnosis malignancies typically present with patterns of somatic genome variants on diverse levels of het‑
erogeneity. Among the different types of genomic alterations, copy number variants (CNV) represent a distinct, near‑
ubiquitous class of structural variants. Cancer classifications are foundational for patient care and oncology research. 
Terminologies such as the National Cancer Institute Thesaurus provide large sets of hierarchical cancer classification 
vocabularies and promote data interoperability and ontology‑driven computational analysis. To find out how cat‑
egorical classifications correspond to genomic observations, we conducted a meta‑analysis of inter‑sample genomic 
heterogeneity for classification hierarchies on CNV profiles from 97,142 individual samples across 512 cancer entities, 
and evaluated recurring CNV signatures across diagnostic subsets. Our results highlight specific biological mecha‑
nisms across cancer entities with the potential for improvement of patient stratification and future enhancement 
of cancer classification systems and provide some indications for cooperative genomic events across distinct clinical 
entities.

Introduction
Structural genome variations constitute a heterogeneous 
group of genomic alterations and can have profound con-
sequences in evolution and human disease[1–3]. Copy 
number variations (CNV) represent a type of structural 
genomic variations as the result of unbalanced genomic 
rearrangements and either increase or decrease the DNA 
content of a genomic region ranging from kilobases to 
multiple megabases [3]. CNVs have been identified as a 

major contributor to malignant transformation, partially 
through their impact on expression levels of genes within 
the copy-varied regions [4] and the exploration of their 
genesis, structure, functional effects and disease associa-
tion plays a crucial role in biomedical research.

Malignant neoplasms comprise a group of complex and 
progressive diseases arising from somatic mutations and 
with a common hallmark of genomic instability. Can-
cer formation and progression are frequently associated 
with widespread copy number abnormalities [5]. While 
germline copy number variations constitute a major 
part of genomic variability within and between popula-
tions and contribute to hereditary disorders [6] in most 
cancer types somatic CNV accumulates during the pro-
gression of the disease [7–9]. The pattern of CNV events 
observed in a given cancer at the time of diagnosis will 
have been influenced by the selection of mutations ben-
eficial for the clonal expansion of the dominant subclone; 
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tissue-specific requirements and the tumor microenvi-
ronment will have affected this oncogenic evolution.

In cancer genomics, CNVs frequently are divided into 
two classes based on their size: i) large-scale, “chromo-
some level” variants encompassing over 25% [10] or 1/3 
of a chromosome arm [11]; and ii) focal variants opera-
tionally defined as having usually not more than 3 Mb in 
size and therefore containing only few genes. While chro-
mosome-scale CNV show different patterns across tumor 
entities, indicating selective processes during oncogen-
esis, focal CNV are considered a stronger indication of 
specific “driver” gene involvement but also operationally 
more accessible due to their low content of (potential) 
target genes.

Specific cancer-related gene families and pathways have 
been shown to be overrepresented among focal CNV 
with a predominance of kinases, cell cycle regulators, 
and MYC family members [12]. Pathogenic CNVs form 
different classes of patterns in cancers that can be help-
ful in the diagnostic and therapeutic assessment of indi-
vidual cancer cases. For instance, glioblastoma (GBM) is 
known for its complex genomic landscape, characterized 
by extensive copy number variations (CNVs) related to 
its aggressive behavior and treatment resistance. Here, 
amplification of the Epidermal Growth Factor Receptor 
(EGFR) gene represents a hallmark CNV. EGFR ampli-
fication leads to overexpression of the receptor, driv-
ing increased signaling for cell growth and survival [13]. 

Another hallmark CNV in GBM and other cancers is the, 
frequently homozygous, deletion of the CDKN2A/B gene 
locus on chromosome 9. This deletion affects the cyclin-
dependent kinase inhibitor genes, allowing uncontrolled 
cell cycle progression.

Previous studies have shown that the CNV pattern can 
be used to organize cancer samples with potential asso-
ciation to specific diseases or disease subtypes [14–16]. 
Similarly to the correlation of individual samples’ CNV 
patterns to a given diagnosis, aggregated CNV profiling 
data frequently show distinct CNV frequency patterns 
for different diseases, even when applied to samples from 
the same organ (e.g. lung adenocarcinoma and squamous 
cell carcinoma ([17] and Progenetix database Fig. 1a and 
b). However, in many cancer types inter-sample CNV 
heterogeneity points to the presence of biological heter-
ogeneity among different tumors of the same diagnostic 
concept. For example, Cavalli et  al. analyzed molecular 
events in 763 primary medulloblastoma samples using 
the similarity network fusion approach and identified 
subtypes with distinct CNV patterns, activated pathways, 
and clinical outcomes within each of the four known 
subgroups and further delineated group 3 from group 4 
[18]. Therefore, the analysis of genomic heterogeneity of 
individual cancer types may provide an avenue towards 
detecting biological heterogeneity with implications 
for cancer research as well as diagnostic and prognostic 
purposes.

Fig. 1 Example CNV frequency patterns of lung adenocarcinoma a and lung squamous cell carcinoma b in the Progenetix database. The x‑axis 
indicates the genome and y‑axis indicates the frequency of CNV event in the corresponding position. Orange and blue indicate duplication 
and deletion, respectively
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Standardized disease classifications are essential for 
expressing diagnostic categories and play a crucial role in 
the systemic study of cancer biologies as well as for the 
evaluation of cancer incidences and epidemiology [19]. 
Additionally to using organ location and histopathologi-
cal characteristics such as the foundational concepts of 
the WHO ICD-O 3 classification [20], parameters from 
genomic and transcriptomic analyses have recently been 
used in the definition of various cancer types. For exam-
ple, colorectal adenocarcinomas have been separated 
into CMS1 (microsatellite instability immune), CMS2 
(canonical), CMS3 (metabolic), and CMS4 (mesenchy-
mal) subgroups [21]; for medulloblastomas, molecular 
analysis resulted in a grouping into SHH, WNT, “Group 
3” and “Group 4” [22] with only limited overlap with pre-
viously defined histological subtypes. However, high het-
erogeneity in cellular phenotypes and dynamic plasticity 
of tumor microenvironments make tumor categorization 
a demanding and complicated task, with the need to bal-
ance between categorical classifications and individual, 
“personalized” feature definitions and a move towards 
dynamic and coherent classification systems that can 
allow for iterative expansion and revision of cancer enti-
ties and subtypes.

Increasingly, the use of hierarchical ontologies for bio-
logical classifications is being recognized as fundamental 
for data access, reusability and large-scale analysis in the 
area of cancer research and therapy as well as in other 
fields of academic biomedicine. Here, a recent attempt 
has been in the development and continuous update of 
the NCIt Neoplasm Core which provides a controlled 
vocabulary for specialists at different sub-domains of 
oncology [23]. The NCIt cancer classification system is a 
part of the National Cancer Institute Thesaurus (NCIt), 
which is a standardized vocabulary of cancer-related con-
cepts. Its hierarchical arrangement with root nodes for 
anatomic sites and histological types allows for a system-
atic representation of diseases, with broader categories 
encompassing more general concepts and progressively 
narrowing down to more specific and detailed disease 
entities. The tiered structure facilitates a comprehensive 
understanding of disease relationships, classifications, 
and subtypes within the NCIt system.

However, the relationships between different types of 
cancer and their associated morphological features may 
not fully reflect the biological reality due to the biologi-
cal heterogeneity or possibly inaccurate clinical disease 
classification. Here, a data-driven approach integrating 
genomic profiling data with the hierarchical structure 
of the cancer classification system has the potential to 
shed new light on relationships between different can-
cer subtypes as well as the underlying mutational events 
[24–26].

In this study, we perform a meta-analysis of disease 
classifications and their concordance with somatic 
genomic variations based on a large data set of cancer 
CNV profiles from the Progenetix database [27, 28]. 
We employ a framework that utilizes the hierarchical 
structure of the NCIt neoplasia core and apply machine 
learning methods to construct a comparative CNV pro-
filing structure. We derive distance estimates from sam-
ple-specific CNV profiling data to measure the CNV 
heterogeneity between samples and extract significant 
cluster-specific CNV features and determine measures 
for genomic heterogeneity within cancer types as well 
as similarities between different cancer entities. By map-
ping CNV-derived measures for genomic distances to 
the NCIt hierarchical tree we are able to reveal potential 
inconsistencies between biological relationships and clas-
sification systems of different cancer types. These results 
also point to specific biological mechanisms and varying 
levels of cancer subtypes across entities and can help to 
improve patient stratification as well as to enhance can-
cer classification systems in the future.

Materials and Methods
Sample selection and data pre‑processing
Somatic copy number variation profiles were collected 
from our Progenetix database (progenetix.org; [28]), the 
largest open resource for curated cancer genome profil-
ing data with a focus on copy number variations. Pro-
genetix currently contains over 116’000 cancer CNV 
profiles, mapped to over 800 diagnostic entities by NCIt 
code. In this study, we utilize CNV profiling data of sam-
ples representing the 512 NCIt codes represented by at 
least 50 individual samples.

Cancer genomes frequently present with a large 
number of individual copy number variation events 
of varying sizes. To enable robust statistical analysis, 
a single vector representation of each sample is con-
structed through the aggregation of the raw CNV 
events across all autosomal chromosomes (1,...,22; sex 
chromosomes excluded due to inconsistent CNV rep-
resentations in original data). Starting from chromo-
somal centromere positions, genome bins of 1Mb size 
are generated resulting in 2892 bins (telomeric bins 
with potential size differences). For each of the bins, a 
value representing the fractional coverage for genomic 
gains and losses is being calculated separately per 
sample, resulting in a vector of 5784 individual CNV 
coverage values. A data matrix is created consisting of 
the status vectors and sample-specific metadata (sam-
ple id, diagnostic codes). Samples without any CNV 
events are removed. For computational convenience, 
the CNV value matrix is converted into a binary rep-
resentation in which “1” stands for the occurrence of 
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a CNV event (if the coverage is larger than 0) in the 
corresponding bin, and 0 represents the absence of 
CNVs. After these pre-processing steps, a binary CNV 
event matrix of 97,142 samples with 5784 bins from 
512 unique NCIt entities was built as input for further 
CNV heterogeneity analysis.

Classification systems
Figure 2 shows the NCIt morphology network in Pro-
genetix. At the top level of the NCIt morphology tree 
is the broad category “Neoplasm”. These categories 
are further divided into more specific subcategories 
based on the histological characteristics of the tissue. 
For example, under the “Neoplasm” category, there are 
subcategories such as “Epithelial Neoplasm”, “Mesen-
chymal Neoplasm,” and “Hematopoietic and Lymphoid 
Tissue Neoplasm.” Under “Epithelial Neoplasm,” there 
are even more specific subcategories such as “Squa-
mous Cell Carcinoma” and “Adenocarcinoma”. For 
many entities the NCIt morphology tree also includes 
information on tumor grade and differentiation, 
potentially providing more accurate disease concepts. 
The morphology-based hierarchy classifies cancers at 
up to 12 different levels of detail (as seen in the histo-
gram plots of Fig. 2); however, the bulk of the unique 
NCIt codes fall between level 1 and level 6 of the tree.

Methodology
Based on the large amount of CNV profiles and hierarchi-
cal cancer classification structure in Progenetix, we build 
a framework (Fig. 3) to analyze the relationships between 
CNV heterogeneity and the cancer classifications sys-
tematically. This framework first collects all sample CNV 
profiles based on the NCIt hierarchical structure. Next, 
it applies hierarchical clustering on the CNV profiles for 
two purposes: a) on the top right side, we calculated the 
distance of all sample pairs with a sample distance matrix 
and mapped the sample distance matrix to the NCIt 
entity distance matrix. The NCIt entity distance matrix 
will be further projected to the NCIt hierarchical struc-
ture by reflecting the distance on the length of edges in 
the hierarchical structure. b) As shown at the bottom left, 
after the first clustering, each sample will be assigned to a 
cluster based on the similarity of CNV profiles. Then we 
will calculate the frequency of these clusters and extract 
the high-frequency CNV events as features, and apply a 
second clustering on these CNV features, integrated with 
the original NCIt entities of these samples, we uncover 
potential cancer subtypes, relationships between differ-
ent cancer entities and significant CNV events.

Genomic distances and hierarchical clustering of CNV profiles
To estimate how CNV heterogeneity relates to the NCIt 
cancer classification system, in this step we calculate all 

Fig. 2 Network representation of terms in the hierarchical NCIt neoplasia core classification system. The histograms on the right show the number 
of NCIt codes at hierarchy level
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inter-sample CNV profile distances and then evaluate 
them in aggregate for the corresponding NCIt entities. 
Specifically, we perform hierarchical clustering on the 
CNV event matrix of all filtered samples using “Ham-
ming distance” [29] as metric. In the following, we use 
“CNV heterogeneity” to reflect the diversity of CNV 
patterns among different samples where the Hamming 
distance is the metric used to quantify the dissimilarity 
between two sequences of equal length, i.e. in the con-
text of copy number variation analysis to compare binary 
CNV profiles of different samples represented as binary 
vectors. A higher Hamming distance indicates greater 
dissimilarity and hence more heterogeneity two samples. 
Hamming distance is sensitive to small changes in CNV 
profiles where even a single altered genomic position 
can contribute to an increase in the Hamming distance, 
allowing for the detection of subtle CNV heterogene-
ity but - when applied to unselected CNV data - can be 
influenced by the extension of individual events. Gener-
ally, a low distance indicates similarity and homogeneity 
among CNV profiles, while a high distance suggests sig-
nificant inter-sample heterogeneity.

The Hamming distance (H) is calculated as:

where n is the length of the sequences, xi and yi are the 
values at position i in the sequences, and δ(xi, yi) is the 
Kronecker delta function which returns 0 if xi equals yi , 
and 1 otherwise.

Hierarchical clustering is a technique used to group 
similar data points into clusters based on their distances. 

H(Sample A, Sample B) =

n
∑

i=1

δ(xi, yi)

This process provides insights into the underlying struc-
ture of the data and helps in identifying meaningful pat-
terns. Here, after calculating the Hamming distances, we 
choose the complete linkage method to define how clus-
ters are being arranged based on the distances of their 
constituent data points, and to construct a dendrogram 
representation of the cluster hierarchy where each leaf 
node represents an individual data point e.g .asample . 
The hierarchical clustering algorithm iteratively merges 
clusters based on their distances forming branches in 
the dendrogram. To separate clusters for further analy-
sis we decide on a strict distance threshold (0.1), which 
ensures high consistency CNV pattern within clusters 
and enough samples, and cut the dendrogram at the 
specified value. After this process, each sample will be 
assigned a group cluster label based on the similarity of 
their CNV profiles. Each sample is now assigned a ’group 
cluster’ label, representing its clustering result, and an 
’NCIt code’ label, indicating the cancer entity it belongs 
to. These labels facilitate the exploration of heterogeneity 
within individual cancers and the identification of simi-
larities across different cancer types.

Transfer of sample CNV heterogeneity to NCIt CNV 
heterogeneity matrix
From the distances for all sample pairs we derive a 
sample CNV heterogeneity matrix Hb , which estimates 
the inter-sample CNV heterogeneity. Next, we transfer 
the CNV heterogeneity matrix of samples to all NCIt 
corresponding entities in the NCIt system and calcu-
late the NCIt distance matrix ( HN  ) based on the sam-
ple distance matrix ( Hb ). Given the sample distance 
matrix Hb and the corresponding relationship between 

Fig. 3 Framework of analyzing the CNV heterogeneity based on NCIt system
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samples and NCIt concepts, we can compute the NCIt 
distance matrix HN  . Let d(·, ·) represent the distance 
function.

For each NCIt concept, we calculate the average 
CNV distance between samples within that concept. 
This average distance serves as a measure of CNV het-
erogeneity for the given NCIt concept. Let BNi denote 
the set of samples associated with an NCIt concept Ni . 
Then, the NCIt distance HN  is calculated as:

where 
(

|BNi |

2

)

 represents the number of unique pairs of 

biosamples in the set BNi , and Hb(bj , bk) is the distance 
between two distinct biosamples bj and bk in the CNV 
distance matrix Hb . By iterating calculating distance for 
each NCIt pair, we can get an NCIt distance matrix, 
which will be used to be mapped to the NCIt hierarchical 
structure.

Group similarities across entities
After the first clustering on all collected CNV profiles, 
to select significant group clusters, which should have 
biology-meaningful similar profiles, we set the distance 
threshold as 0.1 so that samples with a distance less 
than 0.1 will be assigned to the same “group cluster”. To 
remove noisy CNV profiles, we select group clusters 
composed of over 50 but less than 5000 samples. There-
fore, each sample has been assigned a “group cluster” 
label, representing the association to a subset of sam-
ples of a given NCIt code with similar CNV profiles. For 
analyzing how CNV heterogeneity is distributed across 
cancer types, we calculate the bin-specific CNV fre-
quencies for each “group cluster” with the resulting fre-
quency distributions serving as summary representation 
for each cluster. On the other hand, there may also exist 
cancer types with similar patterns. To uncover the CNV 
homogeneity between cancers, for each cluster, we set a 
frequency threshold (z-score higher than 2, which means 
the value is in the top  2.5% ) and transfer the frequency 
data into binary, 1 indicates a feature/pattern in the cor-
responding bin, otherwise 0. In this way, we extract the 
CNV patterns of each “group cluster”. Then we applied a 
second hierarchical clustering on the binary “CNV pat-
tern” data, taking only feature CNV events into account. 
After the second clustering, we can find out the com-
mon/specific patterns of cancer entities and can measure 
the distance within/between NCIt entities based on CNV 
heterogeneity.

HN (Ni) =
1

(

|BNi |

2

)

∑

bj , bk ∈ BNi

j < k

Hb(bj , bk)

Results
In total 9785 samples (around 10% of all samples) from 62 
distinct NCIT codes were selected. We need to note here 
that the distinct NCIt codes here are the direct matches 
of these selected samples, considering the hierarchical 
structure of the NCIt system the selected samples cover 
over 90% of NCIt system.

Due to the strict distance threshold, the selected “group 
clusters” are super significantly similar. Figure  4 shows 
the distribution of NCIt entities across different clus-
ters. Generally, close NCIt entities belonging to the same 
“group clusters” have a rather close distance on the NCIt 
tree. We can also find that for the cancer entities with less 
distinct “group clusters” indicate less CNV heterogene-
ity, such as Oligodendroglioma, Anaplastic Oligodendro-
glioma and Astrocytoma, and are more likely to be in a 
deep level of the NCIt system. In addition, these three 
diseases show high homogeneity since they belong to 
the same “group cluster”, which also belongs to the same 
branch on the NCIt hierarchical tree. We can also find 
some diseases with multiple “group clusters”, for instance, 
Lung Squamous Carcinoma, Ductal Breast Carcinoma, 
and Bladder Urothelial Carcinoma. The three diseases 
also share common “group clusters”, indicating the high 
heterogeneity within while homogeneity between these 
diseases, which is inconsistent with the NCIt tree. There-
fore, we can conclude the trend of constancy of CNV 
heterogeneity with NCIt hierarchical tree and also the 
existence of inconsistency.

CNV heterogeneity within a cancer type
We first analyze the group clusters from the same NCIt 
entities to discover how CNV profiles can reveal heter-
ogeneity within the same disease. The following shows 
the CNV profiles of some representative cancer entities 
(more cancers can be found in the supplementary file) in 
different “group clusters”, the corresponding frequency 
plots and tables show the CNV patterns. By literature 
review, reported CNV patterns are colored red (Figs. 5, 6, 
7).

Glioblastoma
As Fig. 5 shows,  the pattern of chromosome 7 gain and 
chromosome 10 loss is commonly associated with glio-
blastoma and affects multiple genes involved in cell 
growth regulation, including EGFR on chromosome 7 
and PTEN on chromosome 10. While the chromosome 
7 gain and chromosome 10 loss do not always co-occur, 
they also show some co-occurrence with dup 19.

Giant cell glioblastoma (GC-GBM) is a rare vari-
ant of IDH-wt GBM histologically characterized by the 
presence of numerous multinucleated giant cells and 



Page 7 of 13Yang et al. Molecular Cytogenetics           (2024) 17:26  

molecularly considered a hybrid between IDH-wt and 
IDH-mutant GBM. One study [30] showed that the 
molecular landscape of GBMs with at least 30% giant 
cells is dominated by the impairment of TP53/MDM2 
and PTEN/PI3K pathways, and additionally character-
ized by frequent RB1 alterations (dup 19) and hyper-
mutation and by EGFR amplification in more aggressive 
cases. This finding corresponds to group cluster 22292, 
indicating that these groups may belong to a more pre-
cise diagnosis of giant cell glioblastoma.

Follicular Lymphoma
As Fig.  6 shows, Follicular Lymphoma has distinct het-
erogeneous CNV patterns in its group clusters, which 

indicates a higher heterogeneity than other cancer types, 
with features such as deletions on the long arm of chro-
mosome 6 (6q) or gain of chromosome 7q which can 
affect genes associated with cell cycle regulation and 
proliferation. Gain of chromosome 8q is associated 
with aggressive FL subtypes and can be attributed to a 
selection of an increased copy number of MYC proto-
oncogene as an alternative mechanism to chromosomal 
translocations juxtaposing immunoglobulin promoter 
regions to the MYC locus in many instances of B-cell 
lymphomas. Other changes include deletions on 9p, con-
taining the CDKN2A/B tumor suppressor gene locus, 
as well as gains on 18q in group cluster 21921 onco-
gene as alternative mechanism to the t(14;18)(q32;q21) 

Fig. 4 NCIt entity distribution after the first clustering. The numbers indicate the proportion of samples of the NCIt entity in the corresponding 
cluster
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translocation which is characteristic of follicular lym-
phoma and leads to constitutive activation of the BCL2 
gene by the enhancers of the immunoglobulin heavy 
chain locus [31].

Neuroblastoma
CNV analysis has revealed significant genomic altera-
tions associated with neuroblastoma tumorigenesis, 
including amplifications of the MYCN oncogene on 2p, 
deletions affecting the 1p and 11q chromosomal regions, 
and gains of the long arm of chromosome 17. Some of 
these CNV events have been associated with high-risk 
neuroblastoma cases and poor clinical outcomes. In our 
observations, gains of chromosome 17q are distributed 

in all group clusters. Vandesompele et. al. [32] has iden-
tified that there is a clinical distinction between gains 
of 17q and whole chromosome 17: whole chromosome 
17 gain with either a favorable-stage tumor or a tumor 
with whole chromosome 17 gain diagnosed before age 1 
year, show a 100% overall survival compared to a higher 
risk of gains in 17q. Deletions affecting the 1p and 11q 
chromosomal regions (group clusters 28538, 27179 and 
28527) are associated with a more favorable progno-
sis, highlighting the prognostic significance of CNV in 
neuroblastoma.

To make a summary, our framework can uncover the 
CNV heterogeneity within cancers, and these uncov-
ered heterogeneous CNV patterns correspond to known 

Fig. 5 CNV heterogeneity within Glioblastoma
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mechanisms of cancer development, therefore expanding 
the understanding of the relationships of CNV patterns 
and cancer subtypes.

Similarity of CNV patterns between cancer subtypes 
of different diagnostic concepts
Besides intratumoral CNV heterogeneity, the CNV simi-
larities between different tumor entities are proven in the 
“group clusters”. Figure A1–A5 shows the shared CNV 
patterns of different cancer entities clustered together 
because of their similar CNV patterns. We summarise the 
CNV features of cancer entities and use different colors 
for “group clusters”. as shown in Table 1 and 2, carcinoma 
and adenocarcinoma in different organs can show com-
mon CNV patterns. Specifically, ductal breast carcinoma, 
hepatocellular carcinoma and ovarian carcinoma show 
multiple similar patterns in group cluster 3356, 3521 and 
23784, which indicate the rather high CNV pattern heter-
ogeneity within and CNV pattern homogeneity between 

these cancers. We also uncover the co-deletion of chro-
mosome 1p/19q on anaplastic oligoastrocytoma, ana-
plastic oligodendroglioma, astrocytoma, glioblastoma, 
mixed glioma, neuroblastoma and oligodendroglioma. 
Besides the existing biological connections between these 
diseases, these intertumoral CNV homogeneity may also 
indicate inaccurate classifications in the clinical stage.

Besides common patterns inside these clusters, as 
shown in Fig. A6, we notice that there are also similar 
patterns between “group clusters”. Therefore, we cal-
culated the frequency of each cluster and extracted the 
high-frequency CNV events as features, and applied 
a second clustering on these frequency data, to sum-
marize the common CNV patterns across the cancer 
entities based on the first clustering. Figure A7 shows 
the cluster map of the second clustering, with the com-
bination of the original NCIt label and “group clus-
ter” label of the first clustering. Not surprisingly, group 
clusters identified in the first clustering are more likely 

Fig. 6 CNV heterogeneity within Follicular Lymphoma



Page 10 of 13Yang et al. Molecular Cytogenetics           (2024) 17:26 

Fig. 7 CNV heterogeneity within Neuroblastoma

Table 1 Carcinomas with shared CNV patterns

Table 2 Adenocarcinomas with shared CNV patterns
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to be clustered in the second clustering, also with some 
other group clusters. This plot shows the global view of 
how CNV patterns distribute across NCIt entities and 
“group clusters”, indicating the CNV heterogeneity and 
homogeneity within/between cancers. We also calcu-
lated the frequency of each NCIt pair that was assigned 
to the same second cluster, to find out the relationships 
between CNV patterns and NCIt entities. As shown in 
Fig. A8, for NCIt entities Ductal Breast Carcinoma, Pros-
tate Adenocarcinoma, Hepatocellular Carcinoma, Colon 
Adenocarcinoma, Plastomacytoma, Invasive Breast Car-
cinoma, Ovarian Carcinoma, and Garstric Carcinoma, 
these cancer entities show CNV heterogeneity within 
cancer, compared to other sub-groups of the same NCIt 
entity, they are more likely to show more homogeneity 
with other sub-groups of different cancers. These results 
further support our findings that carcinoma and adeno-
carcinoma in different organs could share similar CNV 
patterns.

Estimating the overall CNV heterogeneity in the NCIt 
hierarchical system
Since we have calculated all sample distances, as 
described in Methodology, we can calculate the dis-
tances of NCIt entities based on the sample com-
positions. Fig.  8a shows the distribution of CNV 
heterogeneity inside NCIt entities at different levels of 
the NCIt system. We need to note that to avoid chaos 
structure, in this analysis, for those NCIt entities in dif-
ferent NCIt levels, we simply choose lower one as the 
NCIt level. The level of each NCIt entity is calculated 
by the shortest distance to the root code (i.e., level 1: 

Neoplasm). Given that the deeper the NCIt level is, 
the more specific the disease the NCIt code refers to. 
We assume that the deeper the NCIT level, the lower 
heterogeneity the samples within the NCIt code would 
have. As shown in Fig. 8a, despite the outliers and lim-
ited NCIt entities in levels 2 and 9, there is a trend of 
descending with the increase of NCIt level. The outliers 
may be due to the CNV heterogeneity within cancers 
and CNV homogeneity between cancers shown in the 
last two chapters (2.1 and 2.2).

To compare the CNV heterogeneity within and 
between cancers with respect to the hierarchical struc-
ture of the NCIt system, we calculated the summary of 
the CNV pattern distance for each NCIt entity in the 
“group clusters”. As shown in Fig.  8b, despite the out-
liers with much more/less CNV patterns than other 
NCIt nodes, from level 5 to level 9, the NCIt entities 
in the group clusters show a similar descending trend 
with Fig. 8a. An interesting fact is that there are outliers 
who can both find their parent node in the “group clus-
ters” they are assigned, including Lung Non-Small Cell 
Carcinoma, Lung Squamous Cell Carcinoma, and Lung 
Adenocarcinoma. In other words, the similar CNV pat-
tern of the child-parent node should be due to the inac-
curate disease classification in the clinical stage. As for 
the cancers (without child-parent relationships) with 
similar CNV patterns, they indicate that there could be 
new cancer subtypes for them for more accurate dis-
ease concept representation. In summary, we can con-
clude that the CNV heterogeneity partly corresponds 
to the NCIt hierarchical structure, and our framework 
uncovers the CNV heterogeneity within cancers and 
CNV homogeneity between cancers.

Fig. 8 CNV heterogeneity on the NCIt classification system
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Discussion
Copy number variants (CNVs) are widely recognized 
as crucial players in the development and progression 
of cancer, as they can significantly alter gene dosage, 
disrupt gene regulatory mechanisms, and contribute 
to genomic instability. Numerous studies have demon-
strated that CNV profiles vary not only between dis-
tinct cancer types but also within a single cancer type, 
revealing a high degree of intra-tumor and inter-tumor 
heterogeneity. For example, CNV events like the ampli-
fication of oncogenes or deletion of tumor suppressor 
genes have been consistently linked to tumor progres-
sion, resistance to therapy, and poor clinical outcomes 
in cancers such as breast, lung, and glioblastoma .

Our findings confirm and extend this understanding 
by showing that CNV heterogeneity can be quantified 
and systematically mapped to established cancer sub-
types. The application of machine learning techniques 
allows for a more nuanced exploration of the genomic 
landscape, enabling us to untangle complex CNV pat-
terns across multiple cancer entities. By identifying 
distinct CNV signatures, we provide a framework for 
recognizing cancer subtypes with specific molecular 
perturbations. These subtypes may not align perfectly 
with traditional diagnostic classifications based on 
histopathology or organ of origin. This is in line with 
studies highlighting that genomic classifications often 
reveal novel cancer subgroups that might not be distin-
guishable using conventional clinical or morphological 
criteria.

Our approach offers several implications for the under-
standing of treatment response. CNV profiles have been 
shown to influence sensitivity to targeted therapies and 
immunotherapies. For instance, the deletion of certain 
tumor suppressor genes, such as PTEN, has been asso-
ciated with resistance to immune checkpoint inhibitors. 
Similarly, amplifications of growth factor receptor genes 
like EGFR have been linked to responsiveness to tyros-
ine kinase inhibitors in lung cancer. By characterizing 
the CNV landscape within specific cancer subtypes, our 
framework helps identify molecular vulnerabilities that 
could be exploited for precision medicine, offering a 
potential roadmap for tailoring treatments to individual 
patients based on their unique CNV profiles.

Another important aspect of CNV heterogeneity is 
its contribution to clinical outcomes. Previous studies 
have correlated high levels of CNV burden with worse 
prognosis in several cancers, such as ovarian and colo-
rectal cancer. Our study further demonstrates that 
cancer entities traditionally thought to be distinct may 
share CNV patterns, which can lead to similar clinical 
outcomes. This highlights the potential for reclassifying 
tumors based on their molecular features rather than 

their anatomical location, as proposed by the “tumor-
agnostic” approach to cancer treatment.

By projecting CNV distances onto the hierarchical 
NCIt classification, we identified a trend of decreas-
ing genomic heterogeneity as we move to higher NCIt 
levels. Interestingly, we also observed cases where can-
cer entities located far apart in the NCIt hierarchy dis-
played surprisingly homogeneous CNV patterns. This 
challenges the conventional view of cancer classifica-
tion, suggesting that tumors with similar CNV profiles 
might share underlying biological mechanisms, even if 
they originate in different tissues. These findings under-
score the need for an integrated approach in cancer 
diagnosis and treatment, incorporating both genomic 
and phenotypic data to better capture the complexity of 
cancer biology.

Overall, our results contribute to the growing body of 
evidence advocating for broader genomic and molecular 
profiling strategies in clinical practice. Current diagnos-
tic protocols, which often rely on assessing a limited set 
of known markers, may overlook critical CNV-driven 
molecular alterations. Our framework reinforces the 
importance of comprehensive genomic analysis in the 
clinical setting, as it can uncover novel therapeutic tar-
gets, predict treatment responses, and offer insights into 
tumor evolution and resistance mechanisms.

In conclusion, the use of CNV profiling not only 
advances our understanding of cancer heterogeneity 
but also holds promise for improving patient outcomes 
by informing more precise diagnostic and therapeutic 
approaches. Future studies should aim to validate these 
findings in larger cohorts and explore how CNV profiles 
interact with other molecular features, such as mutations 
and epigenetic changes, to influence cancer biology and 
treatment response.
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